Detecting disease-associated genomic outcomes using constrained mixture of Bayesian hierarchical models for paired data

نویسندگان

  • Yunfeng Li
  • Jarrett Morrow
  • Benjamin Raby
  • Kelan Tantisira
  • Scott T Weiss
  • Wei Huang
  • Weiliang Qiu
چکیده

Detecting disease-associated genomic outcomes is one of the key steps in precision medicine research. Cutting-edge high-throughput technologies enable researchers to unbiasedly test if genomic outcomes are associated with disease of interest. However, these technologies also include the challenges associated with the analysis of genome-wide data. Two big challenges are (1) how to reduce the effects of technical noise; and (2) how to handle the curse of dimensionality (i.e., number of variables are way larger than the number of samples). To tackle these challenges, we propose a constrained mixture of Bayesian hierarchical models (MBHM) for detecting disease-associated genomic outcomes for data obtained from paired/matched designs. Paired/matched designs can effectively reduce effects of confounding factors. MBHM does not involve multiple testing, hence does not have the problem of the curse of dimensionality. It also could borrow information across genes so that it can be used for whole genome data with small sample sizes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Analysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran

Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

مقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین

Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits.  The accuracy of prediction of genetic values ​​in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...

متن کامل

Explaining Heterogeneity in Risk Preferences Using a Finite Mixture Model

This paper studies the effect of the space (distance) between lotteries' outcomes on risk-taking behavior and the shape of estimated utility and probability weighting functions. Previously investigated experimental data shows a significant space effect in the gain domain. As compared to low spaced lotteries, high spaced lotteries are associated with higher risk aversion for high probabilities o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017